

Silvia Caneva, Matthias Grottke, Ingrid Weiss WIP – Renewable Energies

SMART BUILD PROJECT

SMART BUILD PROJECT

Agenda

- Overview of the Smart Build project
- Demo sites selected for the project
- Conclusions

- Full title: Implementing smart ICT concepts for energy efficiency in public buildings
- Co-financed under the Competitiveness and Innovation Framework Programme (CIP) of the European Commission
- Project duration: 01.02.2012 31.01.2015 (36 months)
- Project website: <u>www.smartbuild.eu</u>

Smart

Build

Objectives

Achievement of energy savings (20% - 35%) in annual energy consumption and reduction in the peak load (30%) in public buildings by implementing smart ICT design concepts for energy savings and renewable energy systems integration.

The approach to reach the project objectives:

- 1. MONITORING PERIOD ICT for energy monitoring
- 2. CONTROL AND INTEGRATION PERIOD ICT for energy savings and renewable energy systems integration

Project structure

59

Smart Build

25 SEPTEMBER 2012

Project Consortium

OVERVIEW DEMONSTRATION SITES

Locations

OVERVIEW DEMONSTRATION SITES

Details

Location	Country	Type of building	Demo
S. Michele all'Adige (Trento)	Italy	Office and Laboratory	1
Lavis (Trento)	Italy	School	2
Silandro (Bolzano)	Italy	Hospital	3
Velenje	Slovenia	Gymnasium	4
Velenje	Slovenia	Secondary school - 1	5
Velenje	Slovenia	Secondary school - 2	6
Velenje	Slovenia	Administrative building	7
Velenje	Slovenia	Sport hale	8
Pikermi (Athens) - CRES	Greece	Office and laboratory	9

SMART SOLUTIONS FORUM - 27 EU PVSEC • 9

LAVIS SCHOOL - ITALY

Overview

4 floors + Underground floor including:

Classrooms

Offices

Auditorium

Gym

Canteen

Thermal plant and measurement point verification

Thermal Plant Details

COMBUSTION BOILERS

HEATING ELEMENT

HOT STORAGES

Air Handling Unit - AHU

25 SEPTEMBER 2012

SMART SOLUTIONS FORUM - 27 EU PVSEC • 11

Electric Plant and measurement point verification

25 SEPTEMBER 2012

Electric Plant details

PV PLANT

OVEN

WASHING MACHINE

PV PRODUCTION DISPLAY

PCs -INFORMATIC LAB

PRINTERS

FRIDGE

CLASSROOM'S LIGHTS

CORRIDOR'S LIGHTS

13

Indoor comfort and measurement point verification

- 3 Humidity
- 3 Temperature
- 0 CO₂
- 3 Luminosity
- 0 Occupancy

According to the occupants: Lighting comfort -> good Humidity -> good

The main problems:

- a) Cold in winter in the north side of underground floor
- b) Hot in spring/summer in the third floor
- c) No local regulation of temperature

Overview

25 SEPTEMBER 2012

Overview

Thermal plant

Thermal Plant details

25 SEPTEMBER 2012

HOT STORAGE

Electric Plant

PRODUCTION	Nominal Power [kW]	[m ²]	[kWh]
PV system	None		
Wind generator	None		
Total electric power			
LOADS			
Indoor lighting	Model		Power [W]
Type 1	Fluorescent lamp		522
Type 2	Fluorescent lamp	161	9338
Type 3	Fluorescent lamp	124	2232
Type 4	Incandescent lamps	12	900
Type 5	Incandescent lamps	27	4050
	SELECT SELECT		
Ventilation			
	Model		Power [W]
Type 1	0		
Type 2	0		53
Appliances			
	Model		Power [W]
Type 1	PC	45	
Type 2	Monitor	45	
Туре З	laser Printer		
Type 4	Copier		
Type 5	Maker of smoothies		
Туре б	Refrigator		
Type 7	Stove		

Smart Build

ŚCV

25 SEPTEMBER 2012

Electric Plant details

25 SEPTEMBER 2012

Overview

Ε

S

Smart Build

25 SEPTEMBER 2012

Electric Plant and measurement point verification

Mobile sensor for monitoring the lab:

3 Temperature + Humidity

Connection to the existing PV meteo station

Electric Plant details

A lot of types of electric loads ...

Heating, Ventilation and Air Conditioning (HVAC) Plant

Manual on/off

HVAC Plant details

22 kW heat pump, roof mounted

Lab fan coil

Smart Build

Office Fan Coil

Indoor comfort

According to the occupants: Lighting comfort -> very good Humidity -> good

The main problems:

a) **Cold** on abt 10 days in winter – extra use of electric heaters

b) Fan Coils in lab space not operated due to size and noise

Benefits of the "Smart Build" ICT concept

Technical benefits:

- energy savings
- reduced peak demand
- reduction of the stress on the distribution grid
- reduction of the investment needs on distribution grid level

Economic benefits:

- energy and peak demand savings imply monetary benefits, i.e. money savings
- increase of the value of the building and the expected useful life of the building

Social benefits:

Increased comfort of the building of users/occupants

THANK YOU FOR YOUR ATTENTION

Please visit the Smart Build website

www.smartbuild.eu

WIP – Renewable E	Energies, project coordinator:
Silvia Caneva:	silvia.caneva@wip-munich.de
Matthias Grottke:	matthias.grottke@wip-munich.de
Ingrid Weiss:	ingrid.weiss@wip-munich.de