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Abstract  

This study focuses on the application of system 

identification to estimate the flow rate and the heating 

consumption in a central heating system in an office 

building in San Michele all’ Adige, Italy. The study was 

done within the European ICT PSP project Smart Build 

with the aim to reduce the energy consumption of existing 

public buildings through the application of ICT systems. 

The installed monitoring system, designed after an early 

energy auditing, foresaw the use of permanent 

temperature sensors coupled with a portable flow rate 

meter, to estimate thermal consumption. The flow rate 

varied with time depending on several factors therefore 

making it challenging to monitor it for only a short period. 

To overcome this obstacle we monitored the flow rate for 

four workdays and one weekend to identify a 

mathematical model which could explain the real system 

behaviour. A statistical analysis was performed at first to 

assess the reliability of the monitored data. Subsequently, 

we focused on the identification of autoregressive models 

with exogenous inputs with varying complexity and level 

of confidence. Different tests were performed on the 

hourly data to assess the reliability of the models. The best 

model was subsequently used to estimate the time-

varying heating consumption for available monitoring 

periods with the aim to understand the impact of the ICT 

system as a function of the floor of the building and in 

order to show how system identification can reliably 

estimate the water flow rate in a central heating system 

and consequently be used to calculate the heating 

consumption. The calculated monthly average deviated 

from the bills by 20 %, attributable to the heating 

consumption of the non-monitored ground floor.  

 

1. Introduction  

In the context of the EU project SmartBuild 

(http://www.smartbuild.eu) we wanted to calculate 

the heating consumption in a monitored old office 

building in San Michele all’ Adige constructed in 

1874 and renovated in 2000 (more building detailed 

are summarized in Tab.1). The projects aims to 

reach 30 % of energy saving both in thermal and 

electrical consumption with the application of an 

ICT system. This latter has been installed in two of 

three building floors (1 st and 2nd floor), but during 

the evaluation of the impact of ICT on energy 

consumption a lack of flow rate data impeded to 

calculate the heating consumption of each floor. 

This issue was overcome by monitoring the flow 

rate for a period of five days. These monitored data 

were then used to identify a series of Auto-

Regressive with Exogenous Input (ARX) models 

capable to estimate the system behaviour. The ARX 

model structure has been found to be the simplest 

one to find analytical solutions with excellent 

performance and accurate description of the 

physical model (Ljung, 1999). It is also widely 

applied in different research fields. For example, in 

(Ismail et al., 2011) an ARX model was identified to 

describe the partial input-output data of a heating 

process in a steam distillation essential oil extraction 

system. In (Yun., 2012) an ARX time and 

temperature indexed model was generated to 

predict the building thermal load. 

In this paper, a method to identify the water flow 

rate of a heating system in order to estimate its  

heating consumption is shown. System 
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identification deals with the problem of describing 

a physical system with mathematical equations 

derived from measured data. In this context, the 

equations that describe the physical system are also 

referred to as “black box model”.  

Important steps to identify a black box model are 

(Rabbani et al., 2013): 

- Analysis of the monitored data; 

- Selection of a family of models; 

- Identification of a model that belongs to that 

family; 

- Validation of the model. 

Each of these stages have a high impact on the 

success of the identification process. 

The identification of the models has been done 

using both the R programming language and the 

System Identification Toolbox of Matlab in order to 

minimize the root mean square error between the 

measured and predicted values, analyse and 

evaluate the models. 

The crucial step has been the model validation. We 

have indeed carried out a series of tests in order to 

check that the identified models are suitable and to 

select the best one among them.  

Tests included computing the coefficient of 

determination, autocorrelation of residuals, cross-

correlation of residuals with input parameters, 

comparing the coefficient of determination over the 

training period with that over the validation period 

in order to detect overfitting. 

Concerning the case study, the building has three 

main floors with offices and laboratories and an 

unheated underground floor used for laboratories 

and the thermal power station. After an energy 

audit, only the first and second floor (offices) were 

equipped with a monitoring system leaving the 

ground floor (laboratories) out of the analysis.  

The heating and cooling facilities are: 

- A district heating system with heat exchanger 

and heat tank, supplying hot water to the 

building; 

- An external refrigeration plan and storage 

system to ensure the supply of cold water during 

the cooling season;  

- 2 pipe fan-coils with manual temperature and 

fan control in all offices;  

- radiators and ceiling fans in all laboratories; 

- One Air Handling Unit (AHU) providing the 

labs with sensible and latent heat.  

The thermal parameters measured were divided in 

three categories: 

- Indoor Environmental Quality (IEQ) related 

parameters; indoor temperature, humidity, CO2, 

occupancy and illuminance, measured in five 

offices (two on the first floor and three on the 

second floor); 

- Climate parameters; outside temperature, global 

radiation, wind speed and humidity, from a 

weather station already installed on the 

building; 

- Heating and cooling system parameters; water 

supply and return temperatures for first floor, 

second floor and bathrooms, water supply and 

return temperatures of the hot and cold AHU 

coils, temperature and humidity of the air 

supply duct. 

The flow rate was monitored using a portable flow 

rate device (Type: Dynasonic® ultrasonic flow 

meter) during the period from 5/12/2013 to 

10/12/2013.  

Table 1 Characteristics of the building 

PARAMETER QUANTITY MEAS. 

UNIT. 

Conditioned 

Volume 

3825 m3 

Surface of 

each floor 

425 m2 

Number of 

floor 

3 conditioned floors + 1 

underground floor not 

conditioned   

Intended use Laboratory/Office 

Type of wall Normal brick without insulation 
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2. Simulation  

2.1 Data set  

The monitored data are summarized in Table 1. 

Table 2. INPUT/OUTPUT used for model estimation 

NAME SYMBOL MEAS. 

UNIT. 

Uncert. 

 

INPUT/ 

OUTPUT 

Flow_rate 

1Floor 

FR_1F m3/h ±2 % OUTPUT 

Flow_rate 

2Floor 

FR_2F m3/h ±2 % OUTPUT/ 

INPUT 

T_supply 

1Floor 

Tsupp_1F °C ±0.3 °C INPUT 

T_return 

1Floor 

Tret_1F °C ±0.3 °C INPUT 

T_supply 

2Floor 

Tsupp_2F °C ±0.3 °C INPUT 

T_return 

2Floor 

Tret_2F °C ±0.3 °C INPUT 

T_supply 

Bath 

Tsupp_B °C ±0.3 °C INPUT 

T_return 

Bath 

Tret_B  °C ±0.3 °C INPUT 

External T T_ext °C -* INPUT 

Global 

radiation 

GR W/m2 -* INPUT 

Average 

Occup._BU

I  

Occ_BUI [-] - INPUT 

Average 

Temp._BUI 

T_BUI °C ±0.3 °C INPUT 

* Measurements taken by the weather station situated at 

“Fondazione Edmund Mach”  

2.2 Reliability of the measured data  

As first step the quality of the data measured by the 

sensors was assessed. Each physical quantity has a 

true value that is not observable. During the 

measurement of a physical quantity it is common 

that errors occur. These can be of two types: 

- Systematic errors, such as device accuracy, 

device construction defects and wrong sensor 

usage; 

- Random errors due to uncontrollable factors, 

such as device precision, and variation of 

internal and external environmental conditions. 

 

As ARX models are based on the assumption that 

the behaviour of a physical system varies about a 

stationary (not changing with time) working point, 

the first step is to verify the stationarity of the time 

series (Andrews, 2013). Indeed, a stationary time 

series is a series of successive measurements for 

which mean and variance are constant over time 

and the auto-correlation function depends on the 

lag alone. Therefore, by stationarizing the time 

series one is able to obtain meaningful sample 

statistics such as mean, variance, auto-correlation, 

and cross-correlation with other variables. Such 

statistics are useful as descriptors of future 

behaviour only if the series is stationary. 

To assess the stationarity of the flow rate time series, 

the Augmented Dickey-Fuller (ADF) t-statistic test 

was carried out. 

This test uses the following regression model: 

 

𝑦𝑡
′ = θ𝑦𝑡−1 + 𝛽1𝑦𝑡−1

′ + 𝛽2𝑦𝑡−2
′ + ⋯ + 𝛽𝑘𝑦𝑡−𝑘

′             (1) 

 

Where: 

𝑦𝑡
′: is the differenced series (𝑦𝑡

′ = 𝑦𝑡 − 𝑦𝑡−1) 

𝑘: is the maximum lag 

If the null hypothesis 𝐻0: 𝜃 = 0 of the ADF test is 

rejected, the data is stationary and does not need to 

be differenced. 

 

Table 3 shows the ADF test for flow rates of the 1 st 

and 2nd floor: 

Table 3 Augmented Dickey-Fuller (ADF) test for Fl_2rate1f and 

Fl_rate2f 

Data ADF test Lag order p-value 

Fl_rate1f -4.2143 4 0.01 

Fl_rate2f -4.0124 4 0.01 

 

According to the t-statistic, the p-value is lower than 

the selected significance level of 5 % for both 

variables. The two time series can therefore be 

considered stationary and do not need to be 

differenced. 

The mean can then be subtract from the data: 
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                                      𝑍=𝑥−𝜇                              (2)      

 

Where x is the samples variable and µ is the mean. 

Indeed, for steady state data it is reasonable to 

assume that the mean corresponds to a physical 

equilibrium and the aim to build linear models is to 

describe deviations from this equilibrium, which are 

responses to excitations of the physical system 

(Ljung, 1999). 

 

2.3 Methodology 

The flow rates were measured every hour for five 

days, for a total of 120 samples. The data were 

subsequently divided in two parts. The first part 

was used for the model calibration and the second 

one for the validation. We varied the amount of data 

used for calibration. The best models were obtained 

using 70 % of the data for calibration and the 

remaining 30 % for validation (Mourad et al., 2005). 

The estimation of the ARX model was done through 

the application of a MATLAB script that tries out 

and evaluates different input combinations and 

polynomial orders. The best model among all 

identified models was then chosen as follows. For 

each model, we computed three performance 

indicators: i) the coefficient of determination over 

the calibration period 𝑅𝑐𝑎𝑙
2 , ii) the coefficient of 

determination over the validation period 𝑅𝑣𝑎𝑙
2 , and 

iii) the absolute difference between the two 

coefficients of determination Δ𝑅2: = |𝑅𝑣𝑎𝑙
2 − 𝑅𝑐𝑎𝑙

2 |. In 

addition, all residuals autocorrelation values up to 

lag 20 had to be inside the 95 % confidence interval. 

Next, we considered only those models as valid that 

satisfied the following inequalities: 

- 𝑅𝑣𝑎𝑙
2  > 0.7; 

-  ∆𝑅2 < 0.1. 

At the end, the achieved list was sorted by 

descending 𝑅𝑣𝑎𝑙
2 .  

The first three models in the list were investigated 

further as follows: 

- Computation of the autocorrelation to lag 

20. If all values were inside the 95 %-

confidence interval, we could assume 

randomness; 

- Visual inspection of a scatter plot of 

residuals against fitted values. The points 

should be randomly distributed around 

the zero line and form a horizontal band, 

showing that variances of the residuals are 

equal and that there are no outliers; 

- Computation of the cross-correlations 

between residuals and inputs, to see if a 

specific input generates a pattern in the 

residuals; 

- Visual inspection of the distribution of the 

residuals with a QQ-plot and a histogram; 

- Multicollinearity analysis through Besley 

collinearity diagnostics. 

2.4 Results and discussion 

The first model identified is the flow rate of the 

second floor (FR_2F). The output of this model is 

subsequently used to identify the flow rate model of 

the first floor (FR_1F). This choice was done because 

the two circuits are directly connected to the same 

collector and because the flow rate profile of the first 

floor follows the profile of the second floor. 

The inputs used are shown in Table 4. 

Table 4 Second floor model inputs 

Model Inputs 

Mod_1.2F Tsupp_2F; Tret_2F; Tret_B; T_ext; 

T_BUI; 

Mod_2.2F Tsupp_2F; Tret_2F; Tret_B; T_ext; 

T_BUI; Occ_BUI 

Mod_3.2F Tsupp_2F; Tret_B; T_ext; T_BUI; 

The performance indicators for the best three 

models are shown in Table 4. 

 

Table 5 Coefficients of determination of 2nd f loor flow rate models 

Model 𝑹𝒄𝒂𝒍
𝟐  𝑹𝑨𝒅𝒋_𝒄𝒂𝒍

𝟐  𝑹𝒗𝒂𝒍
𝟐  𝑹𝑨𝒅𝒋_𝒗𝒂𝒍

𝟐
  ∆𝑹𝟐 

Mod_1.2F 0.903 0.898 0.855 0.847 0.048 

Mod_2.2F 0.904 0.898 0.847 0.839 0.057 

Mod_3.2F 0.916 0.911 0.847 0.838 0.057 

 

The low values of  ∆𝑹𝟐 in Table 5 show that models 

do not overfit the data. Indeed, the coefficients of 

determination and validation are very similar, and 

the model can predict in the best way the data as 

shown in Figure 12.  
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The first model in Table 5 has the best 𝑅𝐴𝑑𝑗_𝑣𝑎𝑙
2  

and ∆𝑅2. However, the other two models have 

values very close to the first one. Therefore, the best 

model is chosen depending on the residual analysis. 

 

 

 

 

Figure 1 ACF Mod_2.2F 

 

 

Figure 2 Residuals vs f itted values Mod_2.2F 

 

 

Figure 3 QQ plot residuals Mod_2.2F 

 

Figure 4 Normal distribution residuals of Mod_2.2F 

 

 

Figure 5 CRF Residuals vs Occ_BUI for Mod_2.2F   

 

 

Figure 6 Residuals vs T_BUI for Mod_2.2F   

 

 

Figure 7 Residuals vs Tret_B for Mod_2.2F 
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Figure 8 Residuals vs Tret_2F for Mod_2.2F 

 

 

Figure 9 Residuals vs T_ext for Mod_2.2F 

 

 

Figure 10 Residuals vs Tsupp_2F for Mod_2.2F   

Table 6 Belsley multicollinearity test 

CI S- 

value 

Tsupp_2F Tret_2F Tret_B  T_ext T_BUI Occ_BUI  

1 1.956 0.004 0.002 0.015 0.000 0.012 0.008 

2 1.130 0.001 0.000 0.024 0.349 0.049 0.002 

3 0.707 0.002 0.000 0.255 0.437 0.162 0.012 

4 0.486 0.106 0.010 0.569 0.064 0.201 0.002 

5 0.371 0.054 0.000 0.018 0.003 0.561 0.600 

13 0.146 0.833 0.887 0.117 0.146 0.015 0.374 

 

The multicollinearity test shows that, although the 

variance decomposition proportions are high in the 

last line of Table 6 for Tsupp_2F and Tret_2F, the S-

value is never below 0.1 and the Condition Indices 

(CI) are low. Indeed, the latter have a significance 

only if higher than 30, as specified in Belsley et al., 

1980. 

Based on the residual analysis results, the model 

that best represents the flow rates of the 2nd floor is 

Mod_2.2F. The estimated model equation is: 

 

𝐹𝑅2𝐹 (𝑡) − 0.718 𝐹𝑅2𝐹 (𝑡 − 1) + 0.1643 𝐹𝑅2𝐹 (𝑡 −

2) − 0.06596 𝐹𝑅2𝐹 (𝑡 − 3) + 0.1032 𝐹𝑅2𝐹 (𝑡 − 4) −

0.1105 𝐹𝑅2𝐹 (𝑡 − 5) + 0.06817 𝐹𝑅2𝐹 (𝑡 − 6) +

0.007497 𝐹𝑅2𝐹 (𝑡 − 7) =  −67.98 𝑇𝑠𝑢𝑝𝑝2𝐹 (𝑡) −

13.73 𝑇𝑠𝑢𝑝𝑝2𝐹 (𝑡 − 1) + 83.56 𝑇𝑟𝑒𝑡2𝐹(𝑡) −

30.42 𝑇𝑟𝑒𝑡2𝐹(𝑡 − 1) + 3.5820 𝑇𝑟𝑒𝑡𝐵 (𝑡) −

9.6160 𝑇𝑟𝑒𝑡𝐵 (𝑡 − 1) − 67.98 𝑇𝑒𝑥𝑡 (𝑡) −

13.73 𝑇𝑒𝑥𝑡 (𝑡 − 1) − 23.14 𝑇𝐵𝑈𝐼 (𝑡) −

11.1200 𝑇𝐵𝑈𝐼 (𝑡 − 1) +  99.98 𝑂𝑐𝑐𝐵𝑈𝐼(𝑡) −

28.59 𝑂𝑐𝑐𝐵𝑈𝐼(𝑡 − 1)                            (3) 

Table 7 Distribution of model inputs 

Quantile  Tsupp 

_2F 

Tret 

_2F 

Tret 

_B 

T 

_ext 

T 

_BUI 

Occ 

_BUI 

Min 23.15 24.31 16.01 1.40 17.20 0.00 

25% 27.27 28.55 18.55 5.65 18.21 0.00 

Median 47.52 39.31 37.33 8.00 19.30 0.00 

75% 63.54 57.54 57.14 9.10 20.09 0.20 

Max 69.41 63.38 61.96 12.50 21.22 0.78 

 

 

 

Figure 11 Impact of each input term in model equation (3) 
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The boxplot (Figure 11) shows that the most 

important parameters influencing the flow rate are 

the supply and return temperature of the 2nd floor, 

the return temperature of the bathrooms and the 

external temperature. This assertion is confirmed by 

the fact that the system is controlled by an external 

temperature probe. 

 

The model calibration and validation plots are 

shown hereafter. 

 

 

Figure 11 Calibration of Mod_2.2F 

 

Figure 12 Validation of MOD_2.2F 

An analogous process was carried out to identify a 

model for the first floor, with similar results . 

 

Table 7 1st floor model inputs 

Model Inputs 

Mod_1.1F Tret_B; GR; FR_2F; 

Mod_2.1F Tret_B; FR_2F; 

Mod_3.1F Tret_2F; Tret_B; GR; FR_2F; 

Table 8 Determination coefficients of first floor model 

Model 𝑹𝒄𝒂𝒍
𝟐  𝑹𝑨𝒅𝒋_𝒄𝒂𝒍

𝟐  𝑹𝒗𝒂𝒍
𝟐  𝑹𝑨𝒅𝒋_𝒗𝒂𝒍

𝟐
  ∆𝑹𝟐 

Mod_1.1F 0.981 0.980 0.989 0.989   -0.008 

Mod_2.1F 0.980 0.979 0.988 0.988   -0.008 

Mod_3.1F 0.982 0.981 0.988 0.987   -0.005 

 

Based on the results of Table 8 and on the residuals 

analysis, the best model chosen to evaluate the flow 

rate for the 1st floor is Mod_2.1F. Its model equation 

is: 

 

𝐹𝑅1𝐹(𝑡) − 0.1492 𝐹𝑅1𝐹 (𝑡 − 1) + 0.0084 𝐹𝑅1𝐹 (𝑡 −

2) − 0.0503  𝐹𝑅1𝐹 (𝑡 − 3) + 0.0595  𝐹𝑅1𝐹 (𝑡 − 4) −

0.0387  𝐹𝑅1𝐹 (𝑡 − 5) − 0.0245  𝐹𝑅1𝐹 (𝑡 − 6) −

0.04106  𝐹𝑅1𝐹 (𝑡 − 7) = 33.6900 𝐹𝑅2𝐹 (𝑡) +

0.8957  𝑇𝑟𝑒𝑡𝐵 (𝑡)                               (4)

                      

 

The following figures show the model calibration 

and validation for the FR_1F. 

 

 

Figure 13 Calibration of Mod_2.1F 

 

Figure 14 Validation of Mod_2.1F 
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The estimated models for both flow rates were used 

to find the heating consumption of the San Michele 

building for February, March, April, October and 

December 2013 (“heating season” in Table 9). In the 

other months, it was not possible to use the model 

due to a modification of the system setting. In 

November, billing data is not available.  

Table 9 shows the comparison between the utility 

meter (normalized by the area of all 3 floors: 1425 

m2) and the modelling values (normalized by the 

area of the 1st and the 2nd floor: 950 m2). 

Table 9 Real and model values of building heating consumption 

Season Real value 

[kWh/m2] 

Modelling value 

[kWh/m2] 

Heating season 77.02 85.32 

Average 15.40 17.06 

 

The estimated average heating consumption differs 

from the real consumption by less than 10 %. This 

value is influenced also by the fact that the ground 

floor was not monitored, therefore reducing the 

prediction accuracy. Additionally, due to the 

presence of only few offices on the ground floor it is 

expected to have a small heating requirement 

compared with the first and second floor. 

3. Conclusion 

We showed how system identification can help to 

estimate the water flow rates in a central heating 

system (and the relationship with influencing 

variables) and subsequently the heating 

consumption. We defined and demonstrated a 

methodology aimed at identifying the best model 

among the many generated. The results show that 

the identified model reliably estimates the 

measured heating consumption. However, there is 

room for improvement. An error model could 

increase the quality/fitness of the model and reduce 

the cross correlation of residuals with inputs.  
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